Code: EE3T1

## II B. Tech - I Semester - Regular Examinations - December 2015

## NUMERICAL METHODS AND DIFFERENTIAL EQUATIONS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

## PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Show that  $\nabla = \Delta E^{-1}$ .
  - b) Solve  $x = \sin x$  by bisection method.
  - c) Represent f(x) approximately by a polynomial of degree 2 using lagrange's interpolation, where f(1)=3, f(2)=-5, f(-4)=4.
  - d) Using trapezoidal rule evaluate  $\int_4^8 \frac{dx}{x}$  using four equal sub-interval.
  - e) Find the square root of 17<sup>2</sup> using Newton Raphson Method upto 2 decimals.
  - f) Evaluate  $\frac{dy}{dx}$  at x=0.1 where y(0.0) = 2, f(0.2) = 4, f(0.3) = 8 Newtons Forward interpolation method.
  - g) Form a Partial differential equation by eliminating the arbitrary constants z = ax + by + ab.
  - h) Solve 2p+3q=1.

i. Solve 
$$p - q = \sin x + \sin y$$

j. Solve 
$$\frac{\delta u}{\delta x} = 4 \frac{\delta u}{\delta y}$$

k. Using Simpsons 1/3rd rule evaluate  $\int_1^4 x^3 dx$  using six equal sub-intervals.

Answer any *THREE* questions. All questions carry equal marks.  $3 \times 16 = 48 \text{ M}$ 

2. a) Evaluate i) 
$$\Delta(\sin 2x \sin 4x)$$
, ii)  $\Delta^n(a^{cx+d})$  8 M

b) Use Lagrange's interpolation formula and find y when x=5 from the following data

| X | 1 | 2 | 3 | 4  | 7   |
|---|---|---|---|----|-----|
| Y | 2 | 4 | 8 | 16 | 128 |

3. a) Find the first and second derivatives of the function tabulated below, at the point x=1.5

b) Evaluate  $\int_0^1 \frac{1}{1+x^2} dx$ , using Boole's method, correct to 4 decimal places. Hence find an approximate value of  $\pi$ .

8 M

8 M

- 4. a) Employ Taylor's method to obtain approximate value of y at x=0.2 for the differential equation
  dy/dx = 2y + 3e<sup>x</sup>, y(0) = 0. Compare the numerical solution obtained with exact solution.
  8 M
  - b) Use Runge's method to find the approximate value of y when x=0.8 given that

$$\frac{dy}{dx} = \sqrt{x + y}$$
,  $y(0.4) = 0.41$ , Take  $h = 0.2$  8 M

5. a) Solve 
$$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$$
. 8 M

b) Solve 
$$z^2(p^2 + q^2) = x^2 + y^2$$
. 8 M

6. a) A string is tightly stretched and fastened to two points L apart. Motion is started by displacing the string in the form  $y = a \sin \frac{\pi x}{l}$  from which it is released at time t=0. Show that the displacement of any point at a distance x from one end at time t is given by  $y(x,t) = a \sin \frac{\pi x}{l}$  a  $\cos \frac{\pi ct}{l}$ .

8 M

b) A rod of length L with insulated ends is initially at a uniform temperature  $u_0$ . Its ends are suddenly cooled to  $0^{0}$ C and are kept at that temperature. Find the temperature function U(x,t).